在大多數(shù)需要通過單一輸入源調節(jié)多路輸出電壓的步降電源轉換應用中,開關穩(wěn)壓器會在向FPGA、DSP和微處理器提供負載點(POL)電源時,施加高輸入均方根(RMS)電流和噪聲。為解決此問題,設計工程師通常會采用高輸入濾波(但有附加成本),以減輕傳導型電磁干擾(EMI)和/或輻射型電磁干擾,同時對較高的系統(tǒng)I2R功率損耗加以控制。
在使用音頻放大器的系統(tǒng)中,設計工程師必須克服的另一個技術挑戰(zhàn)是“拍頻”,亦即電源的開關DC/DC轉換器之間的頻差。如果拍頻在100Hz到23kHz之間,則音頻放大器很可能會檢測到它們,并擾亂系統(tǒng)性能。
本文探討了如何使用相移時延技術來對主/從(Master/Slave)配置的多個DC/DC降壓穩(wěn)壓器進行同步。對多個轉換器進行相移可防止ON時間重疊和減小RMS電流、紋波和輸入電容要求,這可改善系統(tǒng)電磁干擾并提高功率效率。該方法還可消除對高輸入濾波電路的需要,并解決與拍頻有關的問題。
如圖1所示,轉換器1是“主”轉換器,它為其余的“從”轉換器提供設定頻率。
同步多個DC/DC轉換器通道比較容易和簡單,但相移編程卻可能是個挑戰(zhàn)。圖2是同相和異相配置的DC/DC轉換器的對比。兩種設計均使用三相方法來提供24A輸出電流。若想增大輸出電流,可增加相數(shù)。在兩種方案中,每個轉換器均已優(yōu)化為8A輸出電流。左側配置為同相工作,而右側的設計使每個相位偏移約120°。左側的3個轉換器具有24A(3×8A)峰值輸入紋波或12A RMS (50%占空比) 。右側的3 個異相工作轉換器的工作電流為8A或4.3A RMS(50%占空比)。
圖2:同相和異相配置三相DC轉換器對比。
如上文所述,使用相移技術可顯著減小輸入和輸出電容要求。RMS輸入電流由公式1規(guī)定:
其中,n為相數(shù),L為輸出電感,F(xiàn)s為開關頻率,k(n,D)=floor(n,D),floor函數(shù)的返回值為小于或等于輸入值的最大整數(shù)。圖3顯示了ΔIIN_RMS(n,D) 與占空比的關系曲線。
表1總結了三個同相工作轉換器和三個異相工作轉換器的性能結果對比。
同步降壓穩(wěn)壓器( 如ISL 8018)為實現(xiàn)異相工作提供了一種簡單、低成本的方法。主開關穩(wěn)壓器的SYNCHOUT特性在每個時鐘周期開始時提供一個電流脈沖ISYNC。該電流源在達到1V SYNCHOUT電壓后終止并放電至0V。從穩(wěn)壓器的SYNCIN特性的檢測閾值為0.9V。當SYNCIN的每個上升沿達到0.9V時,其PHASE的ON脈沖即被觸發(fā)。只需在SYNCIN至GROUND之間添加一個小而便宜的電容,即可改變SYNCHOUT電流源轉換速率。
圖4所示為主/從電路示意圖,圖5所示為其邏輯實現(xiàn)。相移時間(t,單位ns)等于2.8·CPHASE(單位pF)。
電流源的實現(xiàn)比較簡單,只需要70平方密耳的裸片面積。該面積可以調整,以實現(xiàn)±5%的公差。同樣,SYNCIN的閾值也可調整為±0.5%。應用容值在pF范圍內,只需一個具有±1%小公差的低成本NPO或C0G介質的陶瓷電容即可。這樣相移公差約為5.12%。
如上文所述,ISL8018可從主轉換器或外部時鐘加以同步。該特性在多個穩(wěn)壓器的工作頻率彼此很接近時是必不可少的。圖6顯示了工作頻率分別為f1和f2的轉換器1和2。輸入可見一個“拍”頻(fb),亦即f1與f2之差。如果沒有隔離的話,該fb將在GROUND出現(xiàn)。輸出則可能如圖7所示,其中的包絡即為“拍”頻。
通常情況下拍頻非常低,特別是在對多個電源軌使用同類型轉換器時。該低水平將出現(xiàn)在整個系統(tǒng)之中。在包含音頻的計算、電信、工業(yè)或醫(yī)療設備應用中,系統(tǒng)的音頻放大器極有可能接收到拍頻噪聲。如上文所述,添加共?;虿罘帜J皆肼暈V波器將會增加系統(tǒng)設計成本。
然而ISL8018 DC/DC轉換器的SYNC特性能夠通過使用多個時鐘頻率相同的轉換器解決拍頻問題。于是fb將等于0Hz,從而消除整個系統(tǒng)中的拍頻。
評論列表
我要評論